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Abstract. This paper identifies a central role of the topological separation

axiom T1 in the definition of mixed strategies in noncooperative games with

arbitrary pure strategy spaces. Our main result says that a pure strategy space

is topologically T1 if and only if (i) all singleton strategy sets are Borel, (ii) all

Dirac measures are regular, and (iii) the canonical mapping from pure strategies

to Dirac measures is one-to-one. The analysis therefore suggests that the T1

separation axiom is a minimum requirement on the topology of a pure strategy

space when randomization is allowed for. Using an example, we show that the

T1 assumption is indeed missing from the minimax theorem of Mertens (1986).
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1 Introduction

Since the path-breaking contributions of Glicksberg (1952) and Fan (1953), it

has been standard to define a mixed strategy as a regular probability measure

on the Borel sets of the underlying pure strategy space.1 Further, it has been

very common to assume that the topology on the underlying pure strategy spaces

is Hausdorff. However, the rationale for using the Hausdorff separation axiom,

except maybe that it naturally holds in metrizable spaces, has remained less

clear. For example, it is known from Sion (1958) and Reny (1999) that neither

the existence of a value in a two-person zero-sum game nor the existence of

pure-strategy Nash equilibrium (PSNE) in a noncooperative game hinges on any

separation axiom.2 It is therefore remarkable that, with the sole exception of

Mertens (1986), the Hausdorff assumption has been imposed in virtually every

analysis of mixed-strategy Nash equilibria (MSNE).

In this paper, we consider noncooperative games in which pure strategy spaces

are arbitrary topological spaces, and explore the role of the T1 separation axiom

for the definition of mixed strategies. Imposed on a pure strategy set X equipped

with some topology, the T1 separation axiom says that, for any pure strategy x ∈

X, the singleton set {x} is a closed set. The T1 separation axiom is necessarily

satisfied in all Hausdorff (i.e., T2) strategy spaces, but conversely, T1-spaces need

not be Hausdorff. Our main result says that the topology on a player’s pure

strategy space satisfies the T1 separation axiom if and only if (i) all singletons

are Borel measurable, (ii) all Dirac measures are regular, and (iii) the canonical

mapping that transforms any given pure strategy into the corresponding Dirac

1See, however, adaptions of the concept of mixed strategies in extensive games (Kuhn, 1953;
Aumann, 1964) and Bayesian games (Milgrom and Weber, 1985).

2Similarly, Balder (1999, App. A) extended Kakutani’s fixed point theorem to non-Hausdorff
spaces. See also more the recent work by Goubault-Larrecq (2018) and Khan et al. (2024).
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measure is injective. This equivalence suggests that the T1 separation axiom

is a minimum restriction for any pure strategy spaces over which randomized

choices are admitted. As an application, we provide an example of a strategy

space that does not satisfy the T1 separation axiom and for which all finitely

supported strategies are irregular. This example shows, in particular, that the

T1 assumption is missing from the non-Hausdorff minimax theorem in Mertens

(1986, Thm. 3).

We start with a motivating example illustrating the role of topological sep-

aration properties for the definition of mixed strategies. For convenience, the

example works with a finite normal form game, but the discussion captures a

general problem.

Example 1. Consider a Prisoner’s Dilemma game and suppose that the pure

strategy spaces, X = Y = {C,D}, are equipped with the Sierpiński topology

T = {∅, {D}, {C,D}}. Then, the regularity property of any mixed strategy µ

implies

µ({C}) = inf{µ(U) : U ⊇ {C} open}

= µ({C,D})

= 1.

Hence, any mixed strategy satisfies µ({C}) = 1. In fact, the unique MSNE

outcome is (C,C).

Thus, in the absence of any separation axiom, one can define a topology on

the pure strategy spaces of a Prisoner’s Dilemma game such that cooperation

becomes the unique MSNE outcome. To avoid such pathological cases, it seems

desirable to focus on games for which the mixed extension embed pure strategies,
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in the sense that (i) all singleton strategy sets are measurable, (ii) all Dirac

measures are regular, and (iii) the mapping from pure strategies to corresponding

Dirac mixed strategies is one-to-one. We then establish that the T1 separation

axiom is equivalent to these three conditions. Thus, for obtaining a meaningful

mixed extension, imposing T1 on the pure strategy space seem essential.

A useful side-effect of the T1 separation axiom is that the mixed extension

is nonempty. The salience of this observation becomes clear when we apply

our results to the non-Hausdorff minimax theorem derived by Mertens (1986).

Specifically, we will provide an example of a strategy space that does not satisfy

the T1 separation axiom and for which all convex mixtures of Dirac measures are

irregular. This shows, in particular, that the T1 separation axiom is indispensible

for any mixed-strategy minimax theorem, e.g., one that claims the existence of,

e.g., an ε-equilibrium in finitely supported strategies. In contrast, no separation

axiom is needed to derive a pure-strategy minimax theorem, as illustrated by the

work of Goubault-Larrecq (2018).

The remainder of this paper is organized as follows. Section 2 concerns pre-

liminaries. Section 3 contains our main result. Section 4 discusses implications

for the analysis of Mertens (1986). Section 5 concludes.

2 Preliminaries

This section prepares the analysis by reviewing the necessary background on

separation axioms (Subsection 2.1) and regular probability measures (Subsection

2.2).
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2.1 Separation Axioms in General Topology

A topological space3 (X, T ) is Hausdorff (is a T2-space, or satisfies the T2 sep-

aration axiom) if, for any two distinct points x, x′ ∈ X, there are disjoint sets

U,U ′ ∈ T such that x ∈ U and x′ ∈ U ′. The Hausdorff property is equivalent

to the condition that the limit of any convergent net is unique (Kelley, 1975,

Thm. 2.3). In Hausdorff spaces, compact sets are closed. Conversely, however,

the property that compact sets are closed is in general strictly weaker than the

Hausdorff property even for a compact space (Wilansky, 1967, Thm. 1).

A topological space is called a T1-space (or satisfies the T 1 separation axiom)

if any singleton is closed (Kelley, 1975, p. 56). The following lemma provides an

alternative way to think about the T1 separation axiom.

Lemma 1. A topological space (X, T ) satisfies the T1 separation axiom if and

only if, for any two distinct points x, x′ ∈ X, there exists U ∈ T such that x ∈ U

and x′ ̸∈ U .

Proof. See Engelking (1977, Sec. 1.5).

In particular, any Hausdorff space is T1, but the reverse is not generally true.4

3A topology T on X is a collection of open subsets of X such that (i) ∅ and X are open, (ii)
the union of any collection of open sets is open, and (iii) the intersection of any finite collection
of open is open. A topological space (X, T ) consists of a set X and a topology T on X. A set
is closed in X if its complement is open.

4For further discussion of T1-spaces, see Reilly (1995) and Clontz (2024).
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2.2 Regular Probability Measures

Given a measurable space,5 a probability measure on X is a countably additive,

nonnegative set function µ : Σ → R such that µ(X) = 1. The support of a

probability measure µ is the intersection of all closed sets S ⊆ X such that

µ(S) = 1. For x ∈ X, the Dirac measure δx is given by δx(S) = 0 if x /∈ S and

δx(S) = 1 if x ∈ S, for any S ∈ B(X).

Given a topological space (X, T ), the elements of the smallest σ-algebra B(X)

containing all open sets are called the Borel sets. A probability measure µ defined

on the Borel sets of X is regular if for each S ∈ B(X) and ε > 0, there is a closed

set K and an open set U such that K ⊆ S ⊆ U and µ(U\K) < ε (Dunford and

Schwartz, 1958, Sec. III.5).

3 Pure and Mixed Strategies

The definition of the mixed strategies does not impose any separation axiom

on the pure strategy space. As we have seen in Example 1, however, with no

separation axiom imposed at all, strange things may happen. The following is

the main result of the present paper.

Proposition 1. A pure strategy space X is a T1-space if and only if the following

three conditions are satisfied:

(i) Any singleton is Borel measurable;

(ii) any Dirac measure δx is regular;

5A σ-algebra Σ on a set X is a collection of subsets of X such that (i) X ∈ Σ, (ii) if
A ∈ Σ, then Ac = X \ A ∈ Σ, and (iii) if {An}∞n=1 is a countable collection of sets in
Σ, then

⋃∞
n=1 An ∈ Σ. A measurable space is a pair (X,Σ), where X is a nonempty set

and Σ is a σ-algebra on X. Given a measurable space (X,Σ), a set function is a mapping
µ : Σ → R. A set function is nonnegative if it does not attain negative values. A set function
is countably additive if, for any countable collection {Sn}∞n=1 of pairwise disjoint sets in Σ, we
have µ (

⋃∞
n=1 Sn) =

∑∞
n=1 µ(Sn).
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(iii) the mapping x 7→ δx is one-to-one.

Proof. We prove each direction separately.

(Only if) Suppose that X is a T1-space, and take any x ∈ X. Then, {x} is

closed and, hence, Borel, proving property (i). Next, we will show that the Dirac

measure δx is regular. By definition, δx is regular if for each S ∈ B(X) and ε > 0,

there is a closed set K ⊆ X and an open set U ⊆ X such that δx(U\K) < ε.

Take a Borel set S ⊆ X and some ε > 0. There are two cases. Suppose first

that x /∈ S. Then, we choose the closed set K = ∅ ⊆ S and the open set

U = X\{x} ⊇ S and note that δx(U\K) = δx(X\{x}) = 0 < ε. Suppose next

that x ∈ S. Then, we choose the closed set K = {x} ⊆ S and the open set

U = X ⊇ S, noting that δx(U\K) = δx(X\{x}) = 0 < ε. In sum, we have

shown that, indeed, δx is regular, so that property (ii) has been verified as well.

Property (iii) is now immediate because the Dirac measure can be tested on

singletons as a consequence of property (i).

(If) By contradiction. Suppose that conditions (i) through (iii) in the statement

of the proposition hold, but the pure strategy space X is not T1. Then, by

Lemma 1 above, there exist x, x′ ∈ X such that x ̸= x′ and such that any open

set U ∋ x contains also x′. By assumption, the singleton {x} is Borel. Any

closed set K contained in {x} is either the empty set or {x}. Moreover, any

open set U that contains {x} as a subset necessarily contains also x′. Therefore,

regardless of the choice of U and K, the difference set U\K contains x′. Hence,

δx′(U\K) = 1, in conflict with the regularity of δx′ .

Proposition 1 suggests that the T1 separation axiom is a desirable condition on

the topology of a pure strategy space because it ensures the availability of all

pure strategies in the mixed extension. Notably, this also guarantees that mixed
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strategy spaces are nonempty, which would otherwise not be self-evident.

Corollary 1. Suppose that X is nonempty and satisfies the T1 separation axiom.

Then, the set of mixed strategies on X is nonempty.

Proof. Immediate from Proposition 1.

Thus, the T1 separation axiom captures the idea that a player has access to her

pure strategies in the mixed extension.

4 Implications for Mertens (1986)

We have seen above that the T1 separation axiom ensures that any singleton is

Borel and that any Dirac measure is regular. As finite sums of regular mea-

sures are regular, it follows that, in a T1-space, any convex combination of Dirac

measures,

µi =
M∑

m=1

λmδxm ,

with mass points x1, . . . , xM ∈ X and probability weights λ1, . . . , λM ≥ 0 such

that
∑M

m=1 λm = 1, is regular. Thus, the T1 separation axiom ensures that all

convex combinations of Dirac measures qualify as mixed strategies. Moreover,

the support of any such strategy is closed in that case because the T1 separation

axiom ensures that every singleton is closed. Therefore, any convex combination

of Dirac measures is finitely supported in a T1-space. In the absence of the T1

separation axiom, however, there may be no finitely supported mixed strategies

at all, as the following example illustrates.

Example 2. Consider the symmetric two-person zero-sum game, where pure

strategy spaces X = Y = [0, 1] are equipped with the indiscrete topology T # =

{∅, X}, and payoff function u = 0, i.e., constant zero. Then, each player has
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precisely one mixed strategy at her disposition, namely µ given by µ(∅) = 0 and

µ(X) = 1.

This indiscrete topology is the coarsest topology of all, and does not even satisfy

the T1 separation axiom. Notably, since the unique regular Borel probability

measure has the infinite set X as its support, there are no finitely supported

mixed strategies. As discussed already in the Introduction, the example above

is of some relevance for the non-Hausdorff minimax theorem of Mertens (1986,

Thm. 3), which states the existence of an ε-equilibrium in finitely supported

strategies. Namely, in the example constructed above, there are no finitely sup-

ported mixed strategies, which implies that the T1 assumption is missing in the

statement of the minimax theorem.

5 Conclusion

While mixed strategies have been commonly defined over Hausdorff strategy

spaces, the present analysis has shown that the more flexible T1 separation ax-

iom (“points are closed”) should be the more natural requirement. This axiom

ensures that a player, when allowed to randomize, does not lose access to any of

her pure strategies.

The reader will have noted that we did not impose any restriction on the

number of players. Therefore, all we have said applies equally to a Savage-

style single-agent framework, where a decision maker chooses lotteries over acts.

It also applies without change to noncooperative games with infinitely many

players. Indeed, our comments concerned exclusively the relationship between

pure and randomized choices or, as the matter may be, between pure states and

beliefs.
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