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Abstract. This paper identifies a central role of the topological separation
axiom 7T} in the definition of mixed strategies in noncooperative games with
arbitrary pure strategy spaces. Our main result says that a pure strategy space
is topologically Tj if and only if (i) all singleton strategy sets are Borel, (ii) all
Dirac measures are regular, and (iii) the canonical mapping from pure strategies
to Dirac measures is one-to-one. The analysis therefore suggests that the Tj
separation axiom is a minimum requirement on the topology of a pure strategy
space when randomization is allowed for. Using an example, we show that the

Ty assumption is indeed missing from the minimax theorem of Mertens (1986).
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1 Introduction

Since the path-breaking contributions of Glicksberg (1952) and Fan (1953), it
has been standard to define a mixed strategy as a regular probability measure
on the Borel sets of the underlying pure strategy space.! Further, it has been
very common to assume that the topology on the underlying pure strategy spaces
is Hausdorff. However, the rationale for using the Hausdorff separation axiom,
except maybe that it naturally holds in metrizable spaces, has remained less
clear. For example, it is known from Sion (1958) and Reny (1999) that neither
the existence of a value in a two-person zero-sum game nor the existence of
pure-strategy Nash equilibrium (PSNE) in a noncooperative game hinges on any
separation axiom.? It is therefore remarkable that, with the sole exception of
Mertens (1986), the Hausdorff assumption has been imposed in virtually every
analysis of mixed-strategy Nash equilibria (MSNE).

In this paper, we consider noncooperative games in which pure strategy spaces
are arbitrary topological spaces, and explore the role of the T} separation axiom
for the definition of mixed strategies. Imposed on a pure strategy set X equipped
with some topology, the T; separation axiom says that, for any pure strategy = €
X, the singleton set {x} is a closed set. The T} separation axiom is necessarily
satisfied in all Hausdorff (i.e., T) strategy spaces, but conversely, T}-spaces need
not be Hausdorff. Our main result says that the topology on a player’s pure
strategy space satisfies the T} separation axiom if and only if (i) all singletons
are Borel measurable, (ii) all Dirac measures are regular, and (iii) the canonical

mapping that transforms any given pure strategy into the corresponding Dirac

1See, however, adaptions of the concept of mixed strategies in extensive games (Kuhn, 1953;
Aumann, 1964) and Bayesian games (Milgrom and Weber, 1985).

2Similarly, Balder (1999, App. A) extended Kakutani’s fixed point theorem to non-Hausdorff
spaces. See also more the recent work by Goubault-Larrecq (2018) and Khan et al. (2024).



measure is injective. This equivalence suggests that the 7T separation axiom
is a minimum restriction for any pure strategy spaces over which randomized
choices are admitted. As an application, we provide an example of a strategy
space that does not satisfy the T} separation axiom and for which all finitely
supported strategies are irregular. This example shows, in particular, that the
T assumption is missing from the non-Hausdorff minimax theorem in Mertens
(1986, Thm. 3).

We start with a motivating example illustrating the role of topological sep-
aration properties for the definition of mixed strategies. For convenience, the
example works with a finite normal form game, but the discussion captures a

general problem.

Example 1. Consider a Prisoner’s Dilemma game and suppose that the pure
strateqy spaces, X =Y = {C,D}, are equipped with the Sierpinski topology
T = {0,{D},{C,D}}. Then, the reqularity property of any mized strategy

implies

p{C}) = inf{u(U) : U 2{C} open}
= n({C,D})

= 1.

Hence, any mized strategy satisfies w({C}) = 1. In fact, the unique MSNE

outcome is (C,C).

Thus, in the absence of any separation axiom, one can define a topology on
the pure strategy spaces of a Prisoner’s Dilemma game such that cooperation
becomes the unique MSNE outcome. To avoid such pathological cases, it seems

desirable to focus on games for which the mixed extension embed pure strategies,



in the sense that (i) all singleton strategy sets are measurable, (ii) all Dirac
measures are regular, and (iii) the mapping from pure strategies to corresponding
Dirac mixed strategies is one-to-one. We then establish that the T separation
axiom is equivalent to these three conditions. Thus, for obtaining a meaningful
mixed extension, imposing 7T} on the pure strategy space seem essential.

A useful side-effect of the T} separation axiom is that the mixed extension
is nonempty. The salience of this observation becomes clear when we apply
our results to the non-Hausdorff minimax theorem derived by Mertens (1986).
Specifically, we will provide an example of a strategy space that does not satisfy
the T} separation axiom and for which all convex mixtures of Dirac measures are
irregular. This shows, in particular, that the T} separation axiom is indispensible
for any mized-strategy minimax theorem, e.g., one that claims the existence of,
e.g., an e-equilibrium in finitely supported strategies. In contrast, no separation
axiom is needed to derive a pure-strategy minimax theorem, as illustrated by the
work of Goubault-Larrecq (2018).

The remainder of this paper is organized as follows. Section 2 concerns pre-
liminaries. Section 3 contains our main result. Section 4 discusses implications

for the analysis of Mertens (1986). Section 5 concludes.

2 Preliminaries

This section prepares the analysis by reviewing the necessary background on
separation axioms (Subsection 2.1) and regular probability measures (Subsection

2.2).



2.1 Separation Axioms in General Topology

A topological space® (X, T) is Hausdorff (is a Ty-space, or satisfies the Ty sep-
aration axiom) if, for any two distinct points z, 2" € X, there are disjoint sets
U,U" € T such that x € U and 2’ € U’. The Hausdorff property is equivalent
to the condition that the limit of any convergent net is unique (Kelley, 1975,
Thm. 2.3). In Hausdorff spaces, compact sets are closed. Conversely, however,
the property that compact sets are closed is in general strictly weaker than the
Hausdorff property even for a compact space (Wilansky, 1967, Thm. 1).

A topological space is called a T7-space (or satisfies the T'; separation axiom)
if any singleton is closed (Kelley, 1975, p. 56). The following lemma provides an

alternative way to think about the 7T} separation axiom.

Lemma 1. A topological space (X,T) satisfies the Ty separation axiom if and
only if, for any two distinct points x,x" € X, there exists U € T such that x € U
and ' € U.

Proof. See Engelking (1977, Sec. 1.5). O

In particular, any Hausdorff space is T}, but the reverse is not generally true.*

3A topology T on X is a collection of open subsets of X such that (i) ) and X are open, (ii)
the union of any collection of open sets is open, and (iii) the intersection of any finite collection
of open is open. A topological space (X, T) consists of a set X and a topology 7 on X. A set
is closed in X if its complement is open.

4For further discussion of Tj-spaces, see Reilly (1995) and Clontz (2024).



2.2 Regular Probability Measures

Given a measurable space,” a probability measure on X is a countably additive,
nonnegative set function p : ¥ — R such that u(X) = 1. The support of a
probability measure p is the intersection of all closed sets S C X such that
u(S) = 1. For x € X, the Dirac measure 0, is given by 9,(S) = 0 if z ¢ S and
0.(S)=1if z € S, for any S € B(X).

Given a topological space (X, 7T), the elements of the smallest o-algebra B(X)
containing all open sets are called the Borel sets. A probability measure p defined
on the Borel sets of X is reqular if for each S € B(X) and £ > 0, there is a closed
set K and an open set U such that K C S C U and u(U\K) < ¢ (Dunford and
Schwartz, 1958, Sec. I11.5).

3 Pure and Mixed Strategies

The definition of the mixed strategies does not impose any separation axiom
on the pure strategy space. As we have seen in Example 1, however, with no
separation axiom imposed at all, strange things may happen. The following is

the main result of the present paper.

Proposition 1. A pure strategy space X is a Ty -space if and only if the following

three conditions are satisfied:

(i) Any singleton is Borel measurable;

(ii) any Dirac measure 6, is reqular;

°A o-algebra ¥ on a set X is a collection of subsets of X such that (i) X € ¥, (ii) if
A € ¥, then A° = X\ A € %, and (iii) if {A,}32, is a countable collection of sets in
¥, then U2, A, € E. A measurable space is a pair (X,X), where X is a nonempty set
and ¥ is a o-algebra on X. Given a measurable space (X,X), a set function is a mapping
13— R A set function is nonnegative if it does not attain negative values. A set function
is countably additive if, for any countable collection {S,,}22; of pairwise disjoint sets in ¥, we

have p (Ufle Sp) = Zzo:1 p(Sn)-



(iii) the mapping x — 6, is one-to-one.

Proof. We prove each direction separately.

(Only if ) Suppose that X is a Tj-space, and take any x € X. Then, {z} is
closed and, hence, Borel, proving property (i). Next, we will show that the Dirac
measure J,, is regular. By definition, d, is regular if for each S € B(X) and ¢ > 0,
there is a closed set K’ C X and an open set U C X such that §,(U\K) < e.
Take a Borel set S C X and some € > 0. There are two cases. Suppose first
that = ¢ S. Then, we choose the closed set K = () C S and the open set
U = X\{z} O S and note that J§,(U\K) = §,(X\{z}) = 0 < e. Suppose next
that = € S. Then, we choose the closed set K = {z} C S and the open set
U= X DS, noting that §,(U\K) = 0,(X\{z}) = 0 < . In sum, we have
shown that, indeed, J, is regular, so that property (ii) has been verified as well.
Property (iii) is now immediate because the Dirac measure can be tested on

singletons as a consequence of property (i).

(If ) By contradiction. Suppose that conditions (i) through (iii) in the statement
of the proposition hold, but the pure strategy space X is not 7;. Then, by
Lemma 1 above, there exist x, 2’ € X such that x # 2’ and such that any open
set U o x contains also z’. By assumption, the singleton {x} is Borel. Any
closed set K contained in {z} is either the empty set or {z}. Moreover, any
open set U that contains {x} as a subset necessarily contains also z’. Therefore,
regardless of the choice of U and K, the difference set U\ K contains a’. Hence,

3 (U\K) =1, in conflict with the regularity of d,. O

Proposition 1 suggests that the T} separation axiom is a desirable condition on
the topology of a pure strategy space because it ensures the availability of all

pure strategies in the mixed extension. Notably, this also guarantees that mixed



strategy spaces are nonempty, which would otherwise not be self-evident.

Corollary 1. Suppose that X is nonempty and satisfies the T separation axiom.

Then, the set of mized strategies on X 1s nonempty.
Proof. Immediate from Proposition 1. O

Thus, the T} separation axiom captures the idea that a player has access to her

pure strategies in the mixed extension.

4 Implications for Mertens (1986)

We have seen above that the T} separation axiom ensures that any singleton is
Borel and that any Dirac measure is regular. As finite sums of regular mea-
sures are regular, it follows that, in a T}-space, any convex combination of Dirac

measures,

M
i = Z >\m5367”7
m=1

with mass points z!,...,2™ € X and probability weights A, ..., Ay > 0 such
that Zn]\le Am = 1, is regular. Thus, the 7} separation axiom ensures that all
convex combinations of Dirac measures qualify as mixed strategies. Moreover,
the support of any such strategy is closed in that case because the T separation
axiom ensures that every singleton is closed. Therefore, any convex combination
of Dirac measures is finitely supported in a Tj-space. In the absence of the T}
separation axiom, however, there may be no finitely supported mixed strategies

at all, as the following example illustrates.

Example 2. Consider the symmetric two-person zero-sum game, where pure
strateqy spaces X =Y = [0,1] are equipped with the indiscrete topology T# =

{0, X}, and payoff function u = 0, i.e., constant zero. Then, each player has



precisely one mixed strategqy at her disposition, namely u given by u(9) = 0 and

w(X) =1.

This indiscrete topology is the coarsest topology of all, and does not even satisfy
the T} separation axiom. Notably, since the unique regular Borel probability
measure has the infinite set X as its support, there are no finitely supported
mixed strategies. As discussed already in the Introduction, the example above
is of some relevance for the non-Hausdorff minimax theorem of Mertens (1986,
Thm. 3), which states the existence of an e-equilibrium in finitely supported
strategies. Namely, in the example constructed above, there are no finitely sup-
ported mixed strategies, which implies that the 77 assumption is missing in the

statement of the minimax theorem.

5 Conclusion

While mixed strategies have been commonly defined over Hausdorff strategy
spaces, the present analysis has shown that the more flexible 77 separation ax-
iom (“points are closed”) should be the more natural requirement. This axiom
ensures that a player, when allowed to randomize, does not lose access to any of
her pure strategies.

The reader will have noted that we did not impose any restriction on the
number of players. Therefore, all we have said applies equally to a Savage-
style single-agent framework, where a decision maker chooses lotteries over acts.
It also applies without change to noncooperative games with infinitely many
players. Indeed, our comments concerned exclusively the relationship between

pure and randomized choices or, as the matter may be, between pure states and

beliefs.
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